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ABSTRACT

In this paper, we propose a theory of coalition formation in simple games.
The process of coalition formation is modeled as an abstract game. Two solu-

tions of abstract games, the core and the dynamic solution, are used as the

predictions of our model. Two classical theories of coalitions in sociology
due to Caplow and Gamson are reformulated in a more general and mathematical

setting. These theories are then analyzed using the techniques of our theory.
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SIGNIFICANCE AND EXPLANATION

A simple game is a pair (N, %) where N 1is a set of players and ¥ is |
a set of all winning coalitions. (A coalition is a subset of N ). Given a

simple game, one is interested in predicting the coalition that will actually

form.

Simple games are mathematical abstractions of decision making institu-

tions in real life such as legislatures, committees, elections etc. Coali-
tion formation in simple games has been the subject of numerous empirical
and theoretical studies in the social sciences. However, most of these theories

are of a rather ad hoc nature.

In this paper, we propose a theory based on the theory of n-person
cooperative games. Two classical, non-mathematical theories of coalition
formation in sociology due to Caplow and Gamson are reformulated in a more

general and mathematical setting, and analyzed using the techniques of our

theory.

The responsibility for the worjinq and vié@;ﬁ;xprossed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON COALITION FORMATION IN SIMPLE GAMES:
A MATHEMATICAL ANALYSIS OF CAPLOW'S AND GAMSON'S THEORIES
Prakash P. Shenoy
1. Introduction

This paper deals with the question of coalition f9rmation in simple games. Coalition
formation has been the subject of many empirical and theoretical studies in the social sciences.
There are a number of simple theories which essentially consist of a hypothesis concerning the
player's goals or motives, a premise concerning their payoffs and an inference which singles
out the coalitions most likely to form. Some of these theories are reviewed in Shenoy [26].

Regarding simple games, the main thrust of the research in game theory has been in
determining an index which measures the power of each player. Here, we model the process
of coalition formation as an abstract game. The core and the dynamic solution of the abstract
game are then used as the predictions of our model.

Two classical theories of coalition formation due to Caplow and Gamson are reformulated
in a slightly more general and mathematical setting. These theories are then analyzed using
the techniques of our theory.

In Section 2, we review the core and the dynamic solution of abstract games. Simple
games are introduced in Section 3. Our model of coalition formation is presented in Section 4.
Section 5 contains a representation of our model by means of directed graphs. The predictions
of our model are then described in graph theoretic terminology. The mathematical analysis of
Caplow’s and Gamson's theories are presented in Section 6 and 7 respectively. Finally,

Section 8 contains some concluding remarks.

éEbEEB}EE'b§'€h€’EEIE§d States Army under Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.
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2. The core and the dynamic solution of abstract games.

An abstract game is a pair (X, dom) where X is an arbitrary set whose members are
called outcomes of the game, and dom is an arbitrary binary relation defined on X and
is called domination. An outcome x € X is said to be accessible from an outcome y €X ,

denoted by x « y (or y > x), if there exists outcomes 2z _ = x, Zy1Zy0eei?,

0 'z =y

m-1""m .

where m is a positive integer such that

(2.1) x =z dom 2y dom 22 dom ... dom zm—l dom 2 = Y.
Also assume x * x , i.e. an outcome is accessible from itself. Clearly the binary relation
accessible is transitive. ?
{
An interpretation of the relation accessible is as follows: If the players are consid- ;
ering an outcome y at some stage, then an outcome they will consider next will be a z € X
such that 2z dom y. If x <« y and if the players are considering outcome y at some time,
then it is possible that they will consider outcome x at some future time. I.e. one may ’
interpret the relation as a possible succession of transitions from one outcome to another.
Two outcomes x and y which are accessible to each other are said to communicate
and we write this as x ¢ y . Since the relation accessible is transitive and reflexive it

follows that communication is an equivalence relation. We can now partition the set X into

equivalence classes. Two outcomes are in the same equivalence class if they communicate with

each other.

The core C (due to Gillies [14] and Shapley) of an abstract game is defined to be the
set of undominated outcomes. We can rewrite the definition of the core in terms of the rela-
tion accessible as follows
(2+2) C={xe X: Forall ye X, y# x, we have y # x}.

I.e., in the terminology of Markov chains, the core is the set of all absorbing outcomes.
Note that each outcome in the core (if nonempty) is an equivalence class by itself.

We define an elementary dynamic solution (elem. d-solution) of an abstract

game (X,dom) as a set S ¢ X such that

(2. 3) if X ¢S ,yeX=8, then y#¥ x ami

(2.4) if x,y€e S, then y+ x and x <« y.

Condition (2.3) requires S to be 'externally stable' in a dynamic sense, i.e., if the players
are considering x ¢ S at some time, then they will never consider any outcome that is not in
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S in the future. We can think of Condition (2.4) as ‘'internal stability' in a dynamic
sense. I.e., it the players make a transition (in the consideration of outcomes) frcm

. x to y , then it is possible that the players will again reconsider the outcome x in
the future.

- Note that an elem. d-solution is an eguivalence class. The converse, however,
is not always true, i.e., an equivalence class need not be an elem. d-solution. Condi-
tion (2.3) requires S to be (in the terminology of Markov chains) a non-transient
equivalence class. Also note that each outcome in the core is an elem. d-solution.

The dynamic solution (d-solution) P of an abstract game is the union of

all distinct elementary dynamic solutions. I.e.,
(2.5) P=U {S<c<X: s is an elem. d-solution}
The following are easy consequences of the definition.

Proposition 2.1. Let T = (X, dom) be any abstract game. Then C ¢ P .

Theorem 2.2. If X 1is a finite set, then the dynamic solution of the abstract game
(X, dom) is always nonempty and is a unique set.
Proof. See Shenoy [27].
« The dynamic solution has also been defined independently by Kalai, Pazner and

Schmeidler [17, 18].




3. Simple Games.

Let N = {1,...,n} denote the set of players. Nonempty subsets of N are called

coalitions. A simple game can be represented by a pair (N,%) where % 1is the set of

all winning coalitions. A simple game is monotonic iff R ¢ %, T>R=>Tc¢ec %, and

proper iff R €% = N-R 4 % . Proper simple games are always monotonic. A winning
coalition R is called minimal winning if every proper subset of R is non-winning.
A monotonic simple game can be represented by the pair (N,%m) where Wm is the set
of all minimal winning coalitions. IS ¥™ = {{i}}, then player i is said to be a
dictator. If j € a ™ # ¢, then player j is said to be a veto player. If k 4

u%m then player k is said to be a dummy. A weighted majority game is a monotonic

simple game that can be represented by

(3.1) [q H alr---ran]

where g > 0 is called the gquota, ai > 0 is the weight of the ith player and
Re¥ @ 2 a, >q . Expression (3.1) is said to be a weighted majority representa-
ieR

tion of the simple game. Note that the weighted majority game represented by (3.1) is

i > 7 e ¢ ]
proper if g (al a2 +* + an)/z
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4. A Model of Coalition Formation.

Let ' be a n-person simple game. Let 2N denote the set of all nonempty sub-

sets (coalitions) of N and I denote the set of all partitions (coalition structures)

of N . let §: T > E" be a power index (p.i.) where BY denotes the n-dimensional
Euclidean space. Intuitively, given that players in N align themselves into coalitions
in the coalition structure (c.s.) P e I , we intérpret 8 (P) as a vector in E” whose
ith component @(9) (i) 1is a numerical measure of player 1i's power. E.g. 8§ may de-
note the Shapley-Shubik powe: index, the Banzhaf-Coleman power index, the nucleolus, etc.

We can regard I as the set of outcomes of an abstract game. We define a binary

relation on 1 as follows.

Let Pl,P a0 & N, and 8 be a p.i. Then pl dominates P2 with respect to p.i.
$, denoted by LY dom(S)‘P2 o BEE
% a nonempty R € Pl such that s(Ol)(i) > 3(02)(i) ¥ i€R

Intuitively, if ., dom(g) P then the players in some coalition R in c.s. Pl

1

prefer P to (32. We require the players in subset R to be together in a coalition
in gos. F& so that there is no conflict of interest between these players' preference
for pl and their allegiance to the other players in their coalition.

The dominance relation as defined above may be neither asymmetric nor transitive.
We now have an abstract game (II, dom(8)) where I 1is the set of outcomes and dom(§)

is a binary relation on 11 . Let KO(S) and Kl(s) denote the core and the dynamic

solution respectively of this abstract game. By Proposition (2.1), we have Ko(s)c
Kl(s). It is conceivable that Ko(s) may sometimes be empty. However, since N is
a finite set, I is a finite set and hence by Theorem (2.2) we have Kl(g) £ ¢ . KO(S)

and Kl(S) can be considered as the predictions of our model.




5. Representation by Digraphs

Since the number of coalition structures is finite, we can represent the abstract
game (II,dom (8)) by means of a directed graph (or digraph). Let D be a digraph whose
vertex set V(D) = Il and whose arc set A(D) is given by

= 3 X s
A (D) {(91.92) e It x W: P, dom (g) 01}.

We call such a digraph D the transition digraph of the abstract game (II,dom(g)).

Let 0’1,92) € A(D). Then we say Pl is adjacent to 532 and Pz is adjacent from

P, . The outdegree, od(p), for p € Il is the number of c.s.'s adjacent from it and the

i
indegree, id(P), for P € I is the number adjacent to it. Then in terms of this ter-

minology, the core of the abstract game (ll,dom(g)) is given by
" Ky(@®) = {Pe N: od(P) = 0}
To define the dynamic solution in terms of the transition digraph, we need a few
more basic definitions from graph theory (cf. Harary [16]). A (directed) walk in a di-

graph is an alternating sequence of vertices and arcs ., e, P

o 1 17 e en")n in which

each arc e, is (Pi_l,pi). A closed walk has the same first and last vertex. A path
is a walk in which all vertices are distinct; a cycle is a nontrivial closed walk with

all vertices distinct (except the first and the last). If there is a path from P, to

fa, then Pz is said to be accessible from 91. A digraph is strongly connected or

strong if any two vertices are mutually accessible. A strong component of a digraph is

a maximal strong subgraph. Let Tl,T2,...,Tm be the strong components of D . The con-~

*
densation D of D has the strong components of D as its vertices, with an arc from
Ti to Tj whenever there is at least one arc in D from a vertex of Ti to a vertex

of T.. (See Figure 5.1). It follows from the maximality of

T i

Figure 5.1 A digraph and its condensation.
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of strong components that the condensation D of any graph has no cycles. The dynamic

solution of the abstract game (Il,dom(g)) is given by

*
K (Q = U{Ti : 0d(T,) = 0 in the condensation D i
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6. A Mathematical Analysis of Caplow's Theory of Coalitions in the Triad

Much of the recent research on coalition formation in sociology and psychology was
generated by a paper by Caplow [7]. Caplow proposes that the formation of coalitions
"depends upon the initial distribution of power, and other
things being equal, may be predicted under certain assump-
tions when the initial distribution of power is known." [7]

Caplow's four assumptions are:

Al Members of a triad may differ in strength. A stronger member can control a

weaker member and will seek to do so.

A.2. Each member of the triad seeks control over the others. Control over two others
is preferred to control over one other. Control over one other is preferred to
control over none.

N5 Strength is additive. The strength of a coalition is equal to the sum of the
strengths of its two members.

A.4. The formation of coalitions takes place in an existing triadic situation, so
that there is a pre-ccalition condition in every triad. Any attempt by a stronger
member to coerce a weaker member into joining a non-advantageous coalition will
provoke the formation of an advantageous coalition to oppose the coercion.

Caplow enumerates six different triadic power structures and, based on his assump-
tions, makes predictions as to which coalitions will form in each type of triad. In a
subsequent paper, Caplow [8] lists two more types of triads that were overlooked in the
original presentation along with his predictions. The predictions are listed in Table
6.1. Before we compare our theories with Caplow's theory, we will restate Caplow's theory
in a mathematical settingf.

Let I be an n-person weighted majority game
(4.1) [q;al,...,an] where q > (al e T an)/2,
and let ¥ denote the set of all winning coalitions in [I. Let i and j be two dis-

tinct players. We say that player i controls player 3j in coalition structure o iff

either

+The author assumes full responsibility for the ensuing formulation, which, though never
formally stated, is implicit in Caplow's paper [7].




,. . - .—__n aliiicracr i

.Auvox yats suotiorpaad s,morde) o uostaedwod y

%9 °1qelL
(ogv) “(g)(ov) “(d)(av) (g)(dv) “(0)(av) [T°T°Z ‘e) 0=1g9 °(0+8) = V 8
(2av) “(€)(v) “(d)(av) (8)(9V) “(d)(av) [Tz ] (0+g) =V D<€ <V L
(Q8)(V) “()(EV) (9)(E) (V) (T2 4] (0+g) <V 0 <dg<V 9
(09)(V) “(g)(dv) (0g)(V) “(g)(ov) [2e‘q ¢S] (0+1) >V D<€ <V S
(0gY) “(0g)(V) .8:83 (0)(8)(V) [T°T°¢ *£d 0 =€ “(0+g) <V f
(4)(ov) “(0)(&v) (€)(3¥) “(0)(av) [2°C°T %H) 0=¢€ ‘g>V €
(0g)(V) (08) (V) [2°ze *H] (0+8) >V ‘0O=4 ‘d <V Z
(28)(¥) “(8)(0¥) (d)(av¥) | (2E)(V) “(&)(d¥) (d)(av) [T°1°1 2] 0=d=¥V T
()% moTden uoTIEIUSSSIdSY
£31a0(el s90anosay 3O ad£y
pa3ysTep uoTINQTAISTQ perar
SuoT3oTpaad jusTeatnby




; (4.2) ai > aj, and 1i,j € Pk e %, Pk € P, o i
(4.3) ier €%, JéPk ¢ B € P.
Let B(P) (i) denote the number of players player i controls in c.s. £ . The Caplow p
Power Index, denoted by k , is defined as follows: ;
B (1)/ ) BE) () if ] B@ () #0
jeN jeN 2 1
3 (4.4) k(p) (i) = :
; 0 otherwise }

for all i-e N .and all P e N .
Intuitively, k(@) (i) denotes the relative power of player i when the players are
E aligned as in c.s. P +.
We are now in a position to compare Caplow's predictions with the predictions of our
theory. Examples 6.1-6.8 deal with the eight different types of triads analyzed by
Caplow. At the end of each example, we quote Caplow's analysis of the triad, partly to

justify our definition of the Caplow power index.

Example 6.1. Consider the Type 1 triad (2; 1,1,1]. Then the Caplow power index, k , is

4 A BE
{ given by
1 (0, 10, ) if P = (a) (B) (C) .
} (L2, 1/2, 0) 4if P = (AB) (C)
. k(P = < (/2 0, 1/2) 1f g = (AC)(B)
(0, T/2, 1/2) if P = (A) (BC)
L (0, 0; 0) 1f P = (ABC)

{ The transition digraph is as in Figure 6.1. KO(K) = {(AB) (C), (AC)(B), (A) (BC)}.
Caplow argues:
"...each member strives to enter a coalition within which

he is equal to his ally and stronger (by virtue of the
coalition) than the isolate." [7]

Example 6.2. Consider the Type 2 triad [5; 3,2,2]. Then the Caplow power index, k ,
ABC
is given by

+Note that, although Caplow stated his theory only for the restricted case of triads,
our formulation of Caplow's theory holds for the more general case of n-person proper
weighted majority games.




(A)(B)(C)

P |

| g g (ABC)

E (Ac)(B) ;

; (A)(BC)

b

E Figure 6.1. The transition digraph of Type 1 triad.

L (A)(B)(C) |

s

|
(AB)(C) (ABC) ‘
.

(AC)(B) (A)(BC)

Figure 6.2. The transition digraph of Type 2 triad.




(0, 0, 0) if e = (a) (B) (C)

€2/3,-1/3, O} [ AF » = (AB) (C)
kK(P) = (2/3, 0 X243} OQf P = (AC) (B)

(0, 1/2, I/2) if P = (A) (BC)

3, 0. 0) 5 5 2 = (ABC)

The transition digraph is shown in Figure 6.2. go(x) = {(A) (BC)}. Caplow argues:

"...Consider the position of B . If he forms a coalition with
A, he will (by virtue of the coalition) be stronger than C,
but within the coalition he will be weaker than A . 1If, on the

other hand, he forms a coalition with C , he will be egual to
C within the coalition and stronger than A by virtue of the

coalition. The position of C is identical with that of B." [7]
Example 6.3. Consider the Type 3 triad (3; 1,2,2]. Then the Caplow power index, «,
ABC
is given by
0y O 0) i P = (A) (B) (C)

L7352/ 30 0 L P = (AB) (C)
k@ = ( (1/3, 0, 2/3) if P = (aC)(B)

(0, 12 L/2)  if © = (a) (BC)

& (O, L/2, L/2) If P = (ABC)

The transition digraph is shown in Figure 6.3. KO(K) =" {(AB) (C), (AC) (B)} . Caplow
arques:

"...A may strengthen his position by forming a coalition with
either B or C , and will be welcomed as an ally by either

B or C . On the other hand, if B joins C , he does not
improve his pre-coalition position of equality with C and
superiority to A . His only motive to enter a coalition with

C 1is to block AC. However, C's position is identical with
B and he, too, will prefer A to B as an ally." (7]

Example 6.4. Consider the Type 4 triad (3; 3,1,1]. Then the Caplow power index,
A BC
k, is given by
Ly Oy 0) if p= (A)(B)(C)

(273, 173, 0) if @@= (&B)(C)

k(P) = (2/3, 0, 1/3) if = (AC)(B)
(1, 0, 0) if P= (A) (BC)
(1, 0, 0) if = (ABC)

«]Fe
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(A)(B)(C)

(AB)(C) (ABC)

: —
(AC)(B) (A)(BC)

Figure 6.3. The transition digraph of Type 3 triad.

(A)(B)(C) - 1

(AB)(C) ® (ABC)

® (A)(BC)
(AC)(B)

Figure 6.4. The transition digraph of Type 4 triad.
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The transition digraph 1s shown in Figure 6.4. Ko'
Caplow arqgues:

“...B and C have no motive to
Once formed, the coalition would
would still “e equal within it.
to form a coalition with B ox
of them and is not threatened by

be formed, unless B or C can
ing A to join them." (7]
Example 6.5. Consider the Type 5 triad [5; 4,3,2].
ABC
18 given by
-

(0, 0, 0) if

K(P) = < (2/3, G, W/3) it
(0, 2/73, /3 it

(273, 4/3, O) if

‘.
The transition digraph is shown in Figure 6.5. K“(

argues:

x) = {(A) (B)(C), (A)(BC), (ABC)}.

enter a coalition with each other.
still be weaker than A and they

A on the other hand, has no motive
, since he is stronger than each
their coalition. No coalition will
find some extraneous means of induc-

(

Then the Caplow power index, «,

P = (A)(B)(C)

€273, 3/3, O) if P = (AB) (O)

P = (AC) (B)
£ = (A) (BC)
7 = (ABC)

¥) = [(AC) (B), (A)(BC)]. Caplow

*...A seeks to join both B and C and C seeks to join

both A and B but B has no i

ncentive to enter a coalition

with A and has a very strong incentive to enter a coalition

with C . Whether the differenti
make them differentially attracti
of our present assumptions." (7]

al strength of A and B will
ve to C 1lies outside the scope

Example 6.6. Consider the Type 6 triad (4; 4,2,1]. Then the Caplow power index, «,
ABC
is given by
r {2, O OF if P = (A)(B) (C)
(2/3, /3, Oy Aif @ = (AB}Y(C)
K@) = < (2/3, 0, 1/3) if P = (AC)(B)
L, @, O if P = (A)(BC)
L (273; /3 0 *f @ = {(KBC})

The transition digraph is as in Figure 6.6. KO(K)

arqgues:
"...A 1is stronger than B and

= {(a)(B)(C), (A)(BC)}. Caplow

C combined and has no

motive to form a coalition. As in Type 4, true coalition is
impossible. However, while in Type 4 both of the weaker
members seek to join the stronger member, only C can improve
his position by finding some extraneous means of inducing A

to join him." [7)




(a)(B)(C)

(AB)(C ) (ABC)

(AC)(B) (A)(BC)

Figure 6.5 The transition digraph of Type 5 triad.

(a)(B)(C)

(AB)(C) (ABC)

[ ]
(AC)(B) (a)(BC)

Figure 6.6 The transition digraph of Type 6 triad.




By claiming that only C can improve his position by joining A , Caplow seems to

imply that B controls C in the c.s. (A)(B)(C). Such an assumption seems un-

l reasonable to us and we resolve this small discrepancy by suggesting that Caplow has
! erred in making such a claim. Note that a similar discrepancy arises in Caplow's
analysis of the Type 3 triad where he claims that B is superior to A 1in c.s.

{ (a) (B) (C).

Example 6.7. Consider the Type 7 triad [4; 3,2,1]. Then the Caplow power index, «,
is given by R 4
(" (0, 0, 0) if @ = (a)(B)(C)
(2/3, 1/3, 0) if P = (aB)(C)
k(@)= ( (2/3, 0, 1/3) if P = (AC)(B)
(0, 0, 0) if P = (A)(BC) ]
(2/3501/3, 0) HE " pi= (ABC)

-
The transition digraph is shown in Figure 6.7. Hence, KO(K) = {(aB) (C), (AC)(B),

(ABC)} .«

Example 6.8. Consider the Type 8 triad (3; 2,1,1]. Then the Caplow power index, «k ,

ABC
is given by F
( (0, 0, 0) if P = @) (B ()
(2/3, Y/3y O) if P = (AB) (C)
k() = < (2/3, 0, 1/3) if B = (AC)(R)
: (0570, 0) if P = (A) (BC)
(1, 0, 0) if P = (ABC)

The transition digraph is as in Figure 6.7. Hence, KO(K) = {(AB) (C), (AC)(B), (ABC)!.
For the Type 7 and 8 triads, Caplow argues:

"...the combined strength of B and C 1is exactly equal to
A , so that no effective coalition of B and C is strate-
gically possible. In other words, although a coalition of B
and C can block the dominance of A , it is not sufficient
to control the situation, and, therefore, the probable coali-
tions under the standard assumptions are AB or AC." [8]
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(A)(B)(C)

(AB)(C) e (ABC)

(AC)(B) (A)(BC)

Figure 6.7. The transition digraph of Types 7 and 8 triads.

This completes our analysis of the eight different triads. The results are sum-
marized in Table 6.1. A comparison reveals almost total agreement. All the c.s.'s
predicted by Caplow are predicted by our theory. The only disagreements are in Types
4, 6,’7, 8, where our theory predicts more c.s.'s than that predicted by Caplow.
However, this can easily be explained. Caplow implicitly assumes that in every triad,
bargaining for coalitions start from the c.s. (A)(B)(C). A gquick look at Figures 6.1-
6.7 will reveal that with this additional assumption, our theory gives exactly the same
predictions as Caplow's.

Vinacke and Arkoff [31] conducted experiments to test Caplow's theory. Their re-
sults, shown in Table 6.2, tend to support Caplow's theory in general with a few dis-
agreements especially in the case of Type 3 and Type 5 triads. In the Type 3 triad,
Caplow predicts coalition structures (AB) (C) and (AC) (B) without any reference to
their relative frequency of occurrence. However Vinacke and Arkoff note that in the
Type 3 triad, c.s. (AC)(B) occurs more frequently than c.s. (AB)(C). In the Type 5
triad, Caplow predicts coalition structures (AC)(B) and (A) (BC) with the reserva-

tion that
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"...whether the differential strength of A and B
will make them differentially attractive to C lies
outside the scope of our present assumptions." [7]

(A) (BC) occurs more often than c.s. (AC) (B).

likely and c.s. (A)(BC) does not occur at all.

we can compute the probability of formation of each coalition structure in Klg).

we observe that (Figure 6.8) c.s. (AB)(C) forms with probability 1/3, c.s. (AC) (B)

forms with probability 1/3 and c.s. (A)(BC) forms with probability 1/3. However,

an intermediate c.s., i.e., only temporarily.

(A)(B)(C)

1/3

(AB)(C (ABC)

(AC)(B) (A)(BC)

Figure 6.8 The transition digraph of the Type 5 triad with the probability
of transitions under the assumption of equiprobable transitions.
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) The results of the Vinacke-Arkoff experiments indicate that in the Type 5 triad, c.s.

the Type 5 triad, c.s. (A)(BC) occurs twice as frequently as (AC) (B) and that c.s.
(AB) (C) does not occur at all. Also, the same assumption when applied to the case of

Type 3 triad leads to the conclusion that c.s.'s (AB)(C) and (AC)(B) are equally

Then given an initial probability distribution on the set of all cnalition structures,

bility 1/3. Coalition structure (AB)(C) also forms with probability 1/3 but only as

Chertkoff [10] makes an additional assumption which leads to the conclusion that in

G

in the Type 5 triad, given that players start (with probability 1) from c.s. (&) (B)(C),

once c.s. (AB)(C) is formed, c.s. (A)(BC) occurs with probability 1. The net result

is that c.s (A) (BC) occurs with probability 2/3 and c.s. (AC)(B) occurs with proba-

Let us assume that all transitions from each coalition structure are equally likely.

'




A similar analysis of the Type 3 triad (Figure 6.9) indicates that, starting from

c.s. (A)(B)(C) (with probability 1), c.s. (AB){(C) occurs with probability 1/2 and
c.s. (AC)(B) occurs with probability 1/2. Coalition structure (A) (BC) occurs only

as an intermediate coalition structure with probability 1/3. A summary of the predic-

tions of our theories under the assumption of equi-probable transitions is shown in Table

6.3. Note that these predictions agree quite well with the Vinacke-Arkoff experimental

results.

(A)(B)(C)

(ABC)

(aB)(C)

-t
(AC)(B) 1/2  (A)(BC)

Figure 6.9. The transition digraph of the Type 3 triad with the
probabilities of transition under the assumption of

equi-probable transitions.

=20~

i

—




A e o e

*suotaTsueal oiqeqoad-inbe jo uoridunsse oyl Jspun TSpow °*S*O dYl Jo suoriorpaad ay3 yo Aaeuums y

‘€ 9 e1qel
LA E (€)(dv)
z/T (2)(av) T (2)(g)(V) [T‘1°C ‘¢) 8
2/t (a)(av) _
2/ (9)(av) T (0)(g) (V) [T°2‘e *n] L
T (2)(a)(v) T () (g)(V) [T¢C2¢h ¢h] 9
€/2 (0g) (V) \
€/1 (g)(2v) €/1 (0)(av) T (2)(g)(V) [2e¢t ¢S] S
T OXa)XV) T (0)(g)(V) [T°T°e ‘€] h
/T (9)(3v)
Z/1 (d)(av) &/T (08) (V) T (2) () (V) (22T *e] 3
m
_ /T () (V)
T (og)(V) g/t (2)(gv) Y (0)(g)(V) [zz°e ¢h] 4
©/T (08) (V)
€/T (€)(dVv)
e/1 (2)(av) i (2)(g)(V) [T°T'T 'z} T
Auvax (psumsse) uoT3iejuasasaday
saJan31onais saanionaisg 2JanN3IoNalg Lrtaoley
UoT3TTROD UOT3TITROD UOT3ITTROD pa3y3temM adfy
L3T1TTqRqOad Teutrs £3TT1TqRqOag @jeTpawJaaiur A31TTqRqORg Sutiaeisg jusTeaInb3y peTJal

«2]1-




TR TR TR Ty ey,

7. A Mathematical Analysis of Gramson's Theory of Coalition Formation

Following Caplow, Gamson formulated a slightly more general theory of coalition

formation in proper weighted majority games without dictators or veto players. Before

we present Gamson's theory, we need a definition. Let I be a weighted majority game.

A cheapest winning coalition is a winning coalition whose total weight is a minimum

among all winning coalitions.

"Any participant will expec
a share of the payoff propo

Gamson's main hypothesis is as follows:

t others to demand from a coalition
rtional to the amount of resources

which they contribute to a coalition.” ([13]

Here, a participant refers to a player, and his resources refers to his weight in the

weighted majority game.

dictions about coalition formation.

(i) A player will favor a cheapest winn

(ii) A coalition of two distinct players

are reciprocal strategy choices between the two players. I.e. both player

i and player 3j prefer coalition

(iii) The process of coalition formation

merge together into a coalition at

(iv) Once a two-person coalition forms,

Implicit in Gamson's main hypothesis is a definition of a power index.
Let T = [q; al,...,an]

players. Then the Gamson power index, denoted

(7.1)

where

(7.2)

and

players in the coalition are replac

sum of the weights of the two players in the coalition.

YP) (1) = k

Pk € 15 such that 4§ ¢ Pk' for all

g = min X a,
Re¥ ieR

be a proper weighted majority game without a dictator or veto

Based on his main hypothesis, Gamson makes the following pre-

ing coalition.

{i,j} will form if and only if there

el

is a step by step process where two players

a time. »
the situation becomes a new one--the two

ed by one player whose weight equals the

by Yy , is given by

R

—

if z ai9‘0and Pk<9i 3
1(Pk

e

e B
iePk = X j

e € and all i e N. Let v




P

¢7..3) Hg = {Pe 1 : £ contains a cheapest winning coalition!}
Then Theorem 7.1 tells us what our model predicts.
Theorem 7.1 Let ' be a proper weighted majority game. Then KO(Y) = Hg :
Proof: Let s it e P
P, € » uppose Pz € such that !'-‘2 domR(Y) Pl for some R 2

with R e % . Then Y(R) (1) > Y(Pl)(i) for all ieR. Let T ¢ Pl such that T e¥
and Z ag =g Since T is proper, RN T # @ . Let j ¢ RnT. Then y(F&)(j)

ieT
aj/g- Since j e R, v(R)(3) = a./( l a;) > a./g9; i.e., ) a; <g and a contra-

J ieR J i€R

diction (from the definition of g) results. Hence Ko(y) > Hg

L 1 P £

et Pl € 5 and 5 € T such that p 2 4 Hg Then Pl domT(Y) Pz where T ¢ Pl
such that T «% and z ai = g, because Y(Pl)(i) = ai/g for all i <« T and

ieT
Y(R)(i) < a./g for all i e T. Hence K (y) < 1_ .0
i 0 g

It can be easily shown that Gamson's predictions (i)-(iv) about coalition formation
lead to c.s.'s in Hg. However Gamson assumes that players begin forming coalitions
starting from one player coalitions. So if we choose only those c.s.'s in ﬂg that are

accessible from the c.s. consisting of only one player coalitions, our model reaches

the same conclusions as Gamson's predictions.

5 O

s




Gl s 2o,

8. Conclusion

Under the same assumptions, our theory of coalition formation makes the same pre-
dictions as Caplow's and Gamson's theories. This, however, should not be misinterpreted
as an endorsement of these two theories. Both Caplow's and Gamson's theories are de-
scriptive and depend heavily on their (implicit) definition of a power index. From a
normative point of view these power indices have ﬁany shortcomings. Several power in-
dices have been defined for simple games. Two of these, the Shapley-Shubik index [25]
and the Banzhaf-Coleman index [2, 3, 4, 5, 11] have been extensively used and studied.
Hence it is most appropriate to study the predictions of our model with respect to these
power indices. A detailed analysis of the predictions of our theory with respect to the

Shapley-Shubik power index is presented in Shenoy [28].
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